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Nonequilibrium Phase Transition in Stochastic 
Lattice Gases: Simulation of  a 
Three-Dimensional System I 

J. Marro, 1 J. L. Lebowitz ,  z H. Spohn,  3 and M. H. Kalos 4 
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We report results of computer simulations of a three-dimensional lattice gas of 
interacting particles subject to a uniform external field E. The dynamics of the 
system is given by hoppings of particles to nearby empty sites with rates biased 
for jumps in the direction of E. As for the two-dimensional system we find that 
here too there exists a critical temperature, Tc(E ) such that for T < T~(E) the 
systems orders in a very anisotropic phase with striplike typical configurations 
parallel to the field. Tc(E ) increases with E but substantially less strongly than 
in two dimensions. There is a break in the slope of the saturation current at 
Tc(E ). Our data are consistent with the critical exponent fl being mean field. 

KEY WORDS: Steady states; stochastic lattice gases; lsing model under 
electric field; superionic conductors. 

1. I N T R O D U C T I O N  

The  equ i l ib r ium proper t ies  o f  m a c r o s c o p i c  sys tems can  be ob ta ined  as 

averages  over  sui table  Gibbs  ensembles .  A m o n g  the mos t  in teres t ing features  

o f  such systems,  where  m a c r o s c o p i c  size p lays  an essent ial  role, is the 

occu r r ence  o f  phase  t ransi t ions .  The  qua l i t a t ive  unders t and ing  and quan-  

t i ta t ive  ca lcu la t ion  o f  such p h e n o m e n a  f rom first  pr inciples  is one  o f  the 

great  t r iumphs  o f  G ibbs i an  s ta t is t ical  mechan ics .  It  wou ld  c lear ly  be very  

des i rable  to have  a s imi la r ly  power fu l  f o r m a l i s m  also for  nonequ i l i b r i um 

systems.  This  is un fo r tuna te ly  not  the case  at present  even  for  the s imples t  
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models. It therefore appears useful to find out information about the nature 
of possible phase transitions in nonequilibrium systems through computer 
simulations. This note describes the result of such a study. It is an extension 
of the work described in detail in Refs. 1 and 2, where we studied the steady 
state of a stochastic lattice gas in two dimensions subject to a uniform 
external field E. The model is defined as follows. We consider a hypercubic 
lattice in d dimensions with periodic boundary conditions containing N = L a 
sites and pN particles. The microscopic configuration of the system is 
specified by giving the occupation at all lattice sites, t /=  {t/i} with r/i = 0, 1 
corresponding to site i empty or occupied and with Y'it / i=pN. The 
statistical state of the system is described by a probability distribution P(t/) 
on the configurations of the system. 

The configurations t/ evolve according to a stochastic hopping 
dynamics. In the absence of an electric field, this is the familiar kinetic 
lattice gas or Ising model with Kawasaki-type dynamics which leads to an 
equilibrium state specified by 

t 

Peq(t/) = exp[-H(t/)/k,  Tl/2exp[--H(t/)/k. T] 
[ n  

where T is the temperature and k s Boltzmann's constant. The interaction 
energy H is assumed for simplicity to involve only nearest-neighbor sites, 
with periodic boundary conditions, 

H(t/)=-4J ~ t/,t/j 
I i - j l = t  

We consider only attractive interactions, J > 0. For p = 0.5 and d --- 3, the 
case we shall study here, the (infinite) system with E = 0 undergoes a phase 
transition at a critical temperature k s Te ~ 4.5./. 

The field E induces a preferential hopping in the field direction leading 
to a nonequilibrium steady state with a uniform density and a net current. If 
we follow the Monte Carlo prescription of Metropolis et al., (3) the bias is 
most naturally introduced by adding to the potential energy difference, AH, 
the work done by the electric field in a jump. This yields the rates for an 
exchange of the occupations at sites i and i + e in the configuration t/ as 

t l ,  if A H - ( t / t - t / i + e )  e . q E  <~ O 
c(i, i + e, t/) = ( e x p [ - ( ~ u -  ( t / , -  t/i+e) e .  qE)/k, r ] ,  otherwise 

(1.1) 

Here e is a unit vector in the lattice, l e l :  1, and q(<0) is the charge. Only 
nearest-neighbor jumps occur. 

In two dimensions all properties studied depend monotonically on the 
strength of the field and the temperature dependence turned out to be the 
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more interesting one. Therefore we study here only the case of a strong field, 
E ~ oo, and the temperature is the only parameter to be varied. The E field 
is directed along the positive z axis ( d =  3). Then for E = oo (1.1) simply 
means that jumps in the +z direction are always performed, jumps in the --z 
direction are forbidden, whereas jumps in the x - y  planes are governed by the 
usual equilibrium Monte Carlo rates h la Metropolis with no electric field, 
i.e. 

c(i, i + ez) = 1, c(i, i -- ez) = 0 

l l, if A H ~  0 
e ( i , i + e ) =  exp[_AH/kBT] ,  if A H > O ,  e ~ = •  x ,+ey 

(1.2) 

where ex~y,z ) are the unit vectors along the positive x(y ,  z) axis. 
We argued in Ref. 2 that of the multitude of possible rates the 

physically acceptable ones should satisfy locally detailed balance and should 
be a function of the energy difference, the work done by the field included. 
The rate (1.l) satisfies these conditions and provides many exchanges per 
unit time. We refer to Ref. 2 for a more detailed discussion of these points. 

2. COMPUTER S I M U L A T I O N  

We carried out computer simulations on a simple cubic lattice of sides 
L = 30, with periodic boundary conditions, at density 0.5. The field E was 
set equal to oo and the temperature ranged from 0.6T~ to 2T c (To always 
refers to the critical temperature at equilibrium.). Starting with a random 
configuration of 13,500 particles we implemented (1.1) and waited long 
enough, on the order of 104 Monte Carlo time steps, until a steady state is 
reached. (A time steps equals to 13,500 attempted exchanges.) 

In two dimensions (with E = oo) we found that at a temperature of 
roughly 1.3T e the system undergoes a phase transition in which the system 
segregates in dense fluid phase and a vapor phase. Unlike in thermal 
equilibrium the fluid-vapor system is strongly anisotropic with typical 
configurations being striplike in the direction of the field. This basic physical 
phenomenon persists in three dimensions. Below the transition temperature 
strips form along the z axis. In the x - y  planes there is no preferred direction. 
Therefore cross sections of typical configurations orthogonal to the field look 
roughly like a typical cluster in equilibrium at the corresponding tem- 
perature. 

To be more quantitative we display in Fig. 1 histograms for the 
occupation number of columns along the z direction at T/T~ = 0.6, 0.9, 1.0, 
and 1.5. Because p = 0 . 5  the graphs are symmetric around n = 15 and 
therefore only one half is shown. From these histograms we conclude that 
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Fig. 1. Histograms for the occupation number of columns along the field direction at 
T/T  c : 0.6(a), 0.9(b), 1.0(c), and 1.5(d) and saturation field. The vertical axes represent the 
percentage of particles in the system being located in columns along the field direction each 
having n = 0, 1, 2 ..... The horizontal axis is for n. Because of symmetry when p = 1/2 (the 
case of interest here) columns with n occupied sites and ( 3 0 - n )  vacants are considered 
equivalent to columns with n vacants and ( 3 0 -  n) occupied sites; therefore only n ~< 15 is 
shown. Because such symmetry does not exist for n ~-15, contributions for n = 15 were 
doubled in compiling the histograms. 

o rder ing  sets in a round  T c. The low- tempera ture  h i s tograms  are charac-  

terist ic for str iplike conf igura t ions .  For  example ,  at 0 . 6 T  c more  t han  3/4 of  
the co lumns  con ta in  either 0, 1 , 2  or 2 8 , 2 9 , 3 0  part icles  which  is 
d is t inct ively  different f rom thermal  equ i l ib r ium at 0 . 6 T  c. Our  in te rpre ta t ion  

is further conf i rmed  by  the s t ructure  func t ion  S ( k x ,  ky, k s = 0) for the same 
values  of  t empera tu re ;  cf. Tab le  I. 

The na tu ra l -o rde r  pa ramete r  is the difference in densi ty  be tween the 
par t ic le-r ich and  par t ic le-poor  phases.  I f  we define the vert ical  and  hor izonta l  
" m a g n e t i z a t i o n  squared"  as 

M z - L2 (2 r /x ,y ,z -  1) (2.1) 
x , y ~  l z = l  



Table I. Structure Function S(k x, ky, k t = O) at the Same Temperatures 
as the Histograms of Fig. 1 

(a) T =  1.5T c 

3O 
2re kx 

30 
~ -  ky 0 1 2 3 4 

0 0 9 4 5 4 
1 5 4 3 3 3 
2 6 3 3 4 2 
3 3 3 4 2 2 
4 2 3 3 3 3 

(b) T = T  c 
30 

- -  k x 
2zr 

30 
27r ky 0 I 2 3 

0 0 8 32 23 4 
1 168 141 58 32 8 
2 189 14 72 21 7 
3 16 22 7 5 5 
4 10 12 7 5 6 

(c) T = 0 . 9 T ~  
30 
2~ k~ 

30 
2r~ ky 0 1 2 3 4 

0 0 38 168 69 16 
1 29 666 263 30 8 
2 2592 35 4 13 4 
3 55 12 12 l0 11 
4 10 5 2 3 4 

(d) T =  0 . 6 r  c 

30 
2~ kx 

30 
2re ky 0 1 2 3 4 

0 0 880 36 19 13 
1 275 1655 121 31 14 
2 391 31 62 29 13 
3 102 5 14 7 7 
4 12 18 4 4 4 

a The meaning of k z = 0 is to count the number of  particles in each column and to compute 
then tile structure function of the resulting two-dimensional density profile. For kx, ky >~ 
5(2~z/30) S(k) exhibits no particular structure. Therefore we display only kx,  k s = 0, 1, 2, 3, 4 
(2n/30). 

822/38/3-4-20 
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and 

1 L [ 1 L ]2 
v v 1) (2.2) 

= X , y = l  

then the order parameter may be defined by 

Ap = (m2v -- m2) 1/2 (2.3) 

If the alignment was perfect, then Ap = 1, while in the isotropic case (e.g., at 
infinite temperature) Ap = O. Ap is given in Fig. 2. 

According to the mean-field-type theory of van Beijeren and 
Schulman ~3) the critical temperature at E = oo and density 1/2 increases 
with dimension but the relative change [Tc(E = o o ) -  Tc,m]/Tc, m, where To, m 
is the mean field critical temperature, decreases with increasing dimension. 
Our results show that this prediction is qualitatively correct. 

To locate the critical temperature it is convenient to have a bulk 
quantity which is singular at Tc. In our model the average current seems to 
serve this purpose. Because it is obtained by averaging over all bonds 
parallel to the z axis its fluctuations are small. Van Beijeren and Schulman 
predict that the current at E = oo stays constant all the way to T~(oo) and 
then drops roughly linearly. We plot in Fig. 3 the saturation current j ( T )  

. 5  
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Fig. 2. Order parameter Ap versus T/T  c at saturation field. The open circles are included for 
comparison and represent Binder's Monte Carlo results (5) for a simulation of the three- 
dimensional Ising model on a 12 • 12 X 12 lattice. The full curve is the spontaneous 
magnetization for the infinite system as obtained from series expansions. 
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Fig. 3. Average saturation current (E = oo) versus T/Tc normalized by the average current 
at infinite temperature. The full circles represent the results for three dimensions. For the sake 
of comparison we also include the two-dimensional result (open circles). 

normalized by its value at infinite temperature. There seems to be a break in 
its slope around T C consistent with the information from the histograms. For 
comparison we also included the data of the two-dimensional system. The 
break at 1.3Tc is quite pronounced. This value for Tc(oo ) agrees with the 
value for Tc(oo ) obtained from the maximum of the specific heat and from a 
Monte Carlo renormalization group analysis. {5) 

-. 1 7n (@) 

-2. 75 -l.  g5 -l. 15 

in (I-T/To (c~)) 

Fig. 4. log(Ap) with Ap from Fig. 2 versus log(1 -- TITc(oo)) with Tc(oo ) = 1.07T c from 
Fig. 3. The straight line has slope 1/2 and, as comparison, the broken line has the Ising slope 
5/16. 



732 Marro, Lebowitz, Spohn, and Kalos 

0 , n  I , , I 

I 2 

. 5  

Fig. 5. Truncated nearest-neighbor correlation functions in the direction parallel to the field 
(full circles) and orthogonal to the field (open circles) versus TIT c at E = oo. 

From the break in the slope of  the saturation current we estimate 
Tc(oo ) ~ 1.07T~. We use this value in a double logarithmic plot o f  Ap versus 
[Tc(oc ) - r ] / T c ( c ~ ) ;  cf. Fig. 4. The slope of  this curve defines the critical 
exponent ft. Our data are consistent with the mean field value fl = 1/2 but 
seen to rule out the Ising fl = 5/16. This conclusion depends on the choice of 
T~(c~). But we would have to go to T~(c~) = T c to obtain consistency with 
the Ising ft. While this is certainly possible the numerics are more consistent 
with mean field behavior. 

We also studied the nearest-neighbor correlations; cf. Fig. 5. Since 
below T~(oo) the density in a column differs from 0.5, we truncate by the 
square of  the average density in each column. The electric field suppresses 
any correlations in the field direction. In fact, in one dimension there would 
be no correlations at all. The horizontal nearest-neighbor correlations build 
up short-range order as one lowers the temperature. 

3. CONCLUSIONS 

The main purpose of  our simulation was to find out whether the phase 
transition found for a two-dimensional lattice gas subject to a constant 
external electric field persists in three dimensions. This is certainly the case. 
Qualitatively the transition in d = 2 and 3 look alike. The shift in the critical 
temperature follows the prediction of  van Beijeren and Schulman. We do not 
have enough data to pin down the precise nature of  the transition. But our 
data are consistent with Tc(ao ) = 1.07T c and fl = 1/2. For a binary liquid 
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Kawasak i  and Onuki  (6) predicted a change over to mean field behavior  when 

the fluid is set under shear. Beysens and G b a d a m a s s i  (v) confirmed this 
experimental ly.  Our s imulat ion points  in the same direction,  but whether the 
cri t ical  behavior  of  a s tochast ic  lat t ice gas in a constant  external  electric 
field is mean-field-l ike remains  as an intriguing open question. 
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